ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC could improve decommissioning trust fund oversight, OIG reports
The Nuclear Regulatory Commission could do more to improve its oversight of decommissioning trust funds, according to an assessment by the NRC’s Office of Inspector General. In particular, the assessment, which was conducted by Crowe LLP on behalf of the OIG, identified four areas related to developing policies and procedures, workflows, and other support that would enhance NRC oversight of the trust funds.
Valentina Valori, Sunming Qin, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2343-2355
Research Article | doi.org/10.1080/00295450.2024.2355406
Articles are hosted by Taylor and Francis Online.
Accurate models of turbulent buoyant flows are essential for the design of the cooling circuit of nuclear reactors and passive safety systems. However, available models fail to fully capture the physics of turbulent mixing when buoyancy becomes predominant with respect to momentum. Therefore, high-fidelity experiments of well-controlled fundamental flows are needed to develop and validate more accurate models. We analyze experiments of positive and negative turbulent buoyant jets, both in uniform and stratified environments, with the aim of understanding the thermal hydraulics of turbulent mixing with variable density and providing high-fidelity data for the development and validation of turbulence models. Non-intrusive, simultaneous particle image velocimetry and laser-induced fluorescence measurements were carried out to acquire instantaneous velocity and concentration fields on a vertical section parallel to the axis of a jet in the self-similar region. The refractive index matching method was applied to measure high-resolution buoyant jets with up to 8.6% density difference. These data are free of the typical errors that characterize optical measurements of buoyancy-driven flows (e.g. natural and mixed convection) where the refractive index of the fluid is inhomogeneous throughout the measurement domain. Turbulent statistics and entrainment of buoyant jets in uniform and stratified environments are presented. These data are compared with non-buoyant jets in a uniform environment, as a reference to investigate the effects of buoyancy and stratification on turbulent mixing. The results will be used for the assessment of current turbulence models and as a basis for the development of a new model that captures turbulent mixing.