ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Chang M. Kang, Jin-Kyu Kim, Won-Gu Kang
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1337-1346
Note | doi.org/10.1080/00295450.2024.2387409
Articles are hosted by Taylor and Francis Online.
An innovative design is introduced for neutron transmutation employing a proton accelerator in conjunction with a compact subcritical system. The transmutation converter comprises a spherical target enveloped by a subcritical assembly. The subcritical assembly consists of a moderator and low-enriched uranium in shell plates. The subcritical assembly has an inner radius of 10 cm and a thickness of 40 or 55 cm. The material used for the target is lead, and beryllium or beryllium oxide is used as a moderator. Low-enriched uranium in the subcritical assembly contains 5% 235U. The transmutation half-life is inversely proportional to the integral of epithermal 99Tc capture rates. The MCNP6 simulation demonstrates that the transmutation half-life is less than 1 year when exposed to 1-GeV protons at 5 mA. Additionally, it is notable that this half-life can be further reduced with increased proton energies and currents. Previous studies have reported that the 99Tc transmutation half-life using fast reactors and an accelerator-driven system ranges from tens to hundred years; this design concept represents a substantial advancement to previous research efforts.