ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Muhammad R. Abdussami, Aditi Verma
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1256-1281
Research Article | doi.org/10.1080/00295450.2024.2386491
Articles are hosted by Taylor and Francis Online.
Nuclear energy and renewables, both being low-carbon energy sources that are likely to play an increasingly larger role in energy systems of the future, are increasingly being considered from an integrated standpoint. However, the deployment of baseload nuclear reactors as part of such integrated systems may present some challenges in long-term planning, such as surplus energy generation, inflexibility, and increased energy storage requirements. On the other hand, flexible advanced nuclear reactors can be utilized to tackle the limitations of baseload reactors, such as inflexibility of load-following and high initial capital cost.
This paper aims to investigate from techno-economic aspects whether energy modelers should use a flexible nuclear reactor model, specifically a small modular pressurized water reactor technology, or a baseload reactor model of comparable size in long-term integrated nuclear renewable (NR) integrated energy system planning simulations. We mathematically develop an off-grid NR integrated system in a MATLAB environment. An advanced small modular reactor is incorporated in this study and is operated in a baseload and flexible mode of operation for comparative analysis. Two metaheuristic optimization algorithms, pelican optimization algorithm and particle swarm optimization, are employed to obtain and validate the optimal configurations of two different NR systems (e.g. baseload reactor system and flexible reactor system). A sensitivity analysis is conducted to reinforce the key research findings.
The results indicate that a flexible nuclear reactor reduces the total annualized cost by a very small amount (roughly 2%) and the energy storage sizing by around 3% for NR integrated system planning, compared to a baseload reactor. This study provides insights into the operational assumptions (e.g. baseload or flexible operation) to consider during the modeling of a long-term planning problem of for NR integrated systems.