ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Tuğçe Gürdal, Haluk Yücel
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 1056-1065
Research Article | doi.org/10.1080/00295450.2024.2370701
Articles are hosted by Taylor and Francis Online.
In this study, the design and development of a portable neutron detection system based on a 6LiF + ZnS(Ag) scintillator was carried out. The detector system was first modeled using the Monte Carlo simulation code MCNP. As a result of the detector simulation, the materials and photomultiplier tubes (PMTs) were supplied for the system, and the material properties and thicknesses were optimized for the best scintillator, with the EJ-420 (Eljen Technology), consisting of 95% 6Li dispersed in ZnS(Ag), chosen because it has a distinctive feature with regard to high thermal neutron detection efficiency.
Since this material has been shown to offer a significant advantage in favor of neutron detection in mixed radiation fields with gammas and neutrons, the pulse shape discrimination method was employed. To achieve this, a proper electronic circuit was developed to discriminate the pulses from neutrons and gammas. In the experimental step, the EJ-420 scintillator with a 50-mm diameter was optically coupled with a special fast PMT (Hamamatsu H1949-51 model).
In conclusion, this study, which underlines the performed simulations for a neutron detector configuration, gives the obtained experimental results showing discrimination capability in neutron/gamma detection using a 241Am-Be neutron source. The results show that the EJ-420 is a good scintillator due to its highly enriched 6Li transmator, which results in more effective neutron measurements when a portable neutron detector design is chosen.