ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Dean Price, Leia Barrowes, James Wells, Brendan Kochunas
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 1014-1043
Research Article | doi.org/10.1080/00295450.2024.2369476
Articles are hosted by Taylor and Francis Online.
The emission of antineutrinos from nuclear reactors offers a potential avenue for the international enforcement of reactor safeguards. A variety of frameworks have been proposed for detecting these particles, with the objective of verifying an agreed-upon composition of fuel in the operating reactor. More specifically, these frameworks should identify the diversion of a “significant quantity” of fissile material from an agreed upon core loading. For any quantitative analysis of these frameworks, isotope-specific fission rates of a nuclear reactor are required to calculate the reactor neutrino source. Unfortunately, the calculation of isotope-specific fission rates for a realistic core is nontrivial and can require significant simulation efforts.
Therefore, this work uses industry-standard simulation tools (CASMO-4/SIMULATE-3) to provide isotope-specific fission rates for a set of 15 plutonium diversion scenarios for a mixed-oxide-loaded pressure water reactor. These diversion scenarios span a wide range of diverted fuel amounts, from 2.17 to 655.19 kg of fissile plutonium. The isotope-specific fission rates reported in this paper can be combined with a neutrino emission model for the direct calculation of the reactor neutrino source. This work can be considered a dedicated effort toward the calculation of realistic isotope-specific reaction rates for use in the development and analysis of safeguarding frameworks. As such, these isotope-specific fission rates are provided over three cycles with realistic fuel loading and shuffling patterns. In this way, this work can act as a standard neutrino source reference for the development and comparison of safeguarding frameworks.