ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Kodai Fukuda, Toru Obara, Kenya Suyama
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 963-973
Research Article | doi.org/10.1080/00295450.2024.2368966
Articles are hosted by Taylor and Francis Online.
An application of the boiling water reactor (BWR) to an offshore floating nuclear power plant (OFNP) in Japan is discussed. The BWR-type OFNP has some challenges for practical use, although it has high economic efficiency because of downsizing and simplification. One challenge is understanding reactor kinetics under conditions specific to the marine environment. This study quantitatively clarifies the total and spatial changes in power when the BWR is inclined during regular operation.
Therefore, the TRACE (TRAC/RELAP Advanced Computational Engine) and PARCS (Purdue Advanced Reactor Core Simulator) codes were used to perform a three-dimensional neutronics–thermal-hydraulics–coupled transient analysis. The calculation model is based on Peach Bottom II.
This study clarifies the changing trend in total and local BWR power by inclination with simplified modeling and conditions. The reasons for such changes are discussed based on changes in several thermal-hydraulic parameters. The difference in BWR power against the inclinations is small. Thus, it is implied that the BWR-type OFNP is expected to have a stable power supply capability during natural disasters. However, to confirm the power stability of the BWR reactor under a full range of offshore external conditions, further research is required. A description of additional research needs that would further support the safety case for this reactor design are discussed.