ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Xintian Cai, Huai-En Hsieh, Zhibo Zhang, Shiqi Wang, Saikun Wang
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 777-789
Research Article | doi.org/10.1080/00295450.2024.2361180
Articles are hosted by Taylor and Francis Online.
In this study, the heat transfer performance of γ-Fe2O3 nanofluid is investigated. The particle size used in the experiment was about 20 nm. It was found by X-ray diffraction that it was consistent with the characteristic peak and no other impurities. Nanofluids with different concentrations were configured through a two-step method. Since the γ-Fe2O3 nanoparticles are not easily dispersed, the ultrasonic time was relatively long. After a series of experiments and data processing, we could see that nanofluids have the best heat transfer performance at 0.07 g/L.
Compared to a reverse-osmosis (R·O) water case, the enhancement of critical heat flux (CHF) was about 34.09%, and the heat transfer coefficient enhancement was about 49.32%. The movement of bubbles during the experiment was recorded and analyzed. Compared with the R·O water case, the bubbles were larger and fewer in the nanofluid case, and what is more, the bubble movement was relatively intense.
The heating surface was characterized after the experiment, and it was found that the wettability of the heating surface was changed, and the roughness of the heating surface decreased. Scanning electron microscopy showed that the deposition of the nanoparticles on the heating surface was the main cause of CHF enhancement. When the concentration was 0.08 g/L, CHF decreased, mainly because the excessive deposition of the nanoparticles increased the thermal resistance of the heating surface and led to the deterioration of heat transfer.