ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Trevor Melsheimer, Craig Menezes, Yassin A. Hassan
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 725-741
Research Article | doi.org/10.1080/00295450.2024.2348853
Articles are hosted by Taylor and Francis Online.
Flow blockages in Liquid Metal Fast Reactor (LMFR) fuel assemblies that can cause fuel pin cladding failures require further investigation for the development and optimization of these Generation IV reactor designs. The objective of this study was to experimentally evaluate the effects of a porous blockage accident scenario on laminar flow behavior in the interior subchannels of a prototypical 61-pin wire-wrapped rod bundle. The laminar flow condition is considered because of its importance to natural circulation and loss-of-coolant-accident operating scenarios as well as the limited availability of experimental data. The matched-index-of-refraction method was utilized to obtain two-dimension two-component time-resolved particle image velocimetry (TR-PIV) measurements at three planes centered on blocked and neighboring subchannel regions. Time-averaged first-order and second-order statistics, computed by Reynolds decomposition, were visualized including the mean and fluctuating streamwise and spanwise velocity components. Line profiles described the evolution of flow from upstream regions, to separated flow, and recombination downstream, while a modified Galilean decomposition distinguished differences between flow in the blocked measurement plane and flow in its neighboring counterpart region. Spatial-temporal cross-correlations were performed for the streamwise velocity fluctuations to characterize the convection velocity and decay of traveling vortices in the wake of the porous blockage. The isothermal TR-PIV measurements from this study provide high-fidelity experimental data sets for the validation of computational models and numerical studies to characterize complex fluid phenomena in wire-wrapped rod bundles during the potential accident scenario of a porous, interior flow blockage.