ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Tyler Williams, Jason Torrie, Mark Schvaneveldt, Ranon Fuller, Greg Chipman, Devin Rappleye
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 708-724
Research Article | doi.org/10.1080/00295450.2024.2348849
Articles are hosted by Taylor and Francis Online.
The identities of unknown analytes within four eutectic LiCl-KCl melts were determined using electrochemical methods, simulating the uncertainty of electrochemically probing an electrorefiner salt bath or molten salt nuclear reactor. With a variety of electrochemical methods (e.g. cyclic voltammetry, chronopotentiometry, and square-wave voltammetry), and electroanalytical techniques (e.g. semi-differentiation), every analyte was positively identified, although one false positive occurred because of an unexpected chemical interaction. This study highlights some remaining challenges for the use of electrochemical sensors in nuclear material control and accountability in molten salts: (1) quantification of analytes without the use of calibration curves (e.g. error in property values, such as diffusion coefficient) and (2) additional and interfering electrochemical signals due to interaction and alloying of multiple species.