ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Mellissa Komninakis, Joseph Sinicrope, James C. Nicholson, Philip Moore, Yolanda Rodriguez, Leonel Lagos, Daniela Radu
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 598-606
Research Article | doi.org/10.1080/00295450.2024.2345945
Articles are hosted by Taylor and Francis Online.
Safety basis calculations support the safety considerations necessary for legacy nuclear facilities as they transition from active use, through limited operations and standby modes, until final disposition is achieved. Many of the calculations are governed heavily by the coefficients presented in DOE-HDBK-3010 in the form of airborne release of radioactive material resulting from penetration of the facility per seismic activity, full facility fires, and/or explosions. The main objective of this study is to validate the original data for airborne release fractions (ARFs) for powder contaminants under impact, as determined in DOE-HDBK-3010. The limited data available for impact experiments was generated at the Rocky Flats Plant in 1987, where the median ARFs for surrogate powder contamination were 4E-4 with a bounding value of 1E-2. However, estimating the level of uncertainty was challenging in the absence of multiple measurements conducted under identical test conditions. Moreover, the uncertainty was significantly increased due to the restricted range of the test conditions.
A more modern approach has been developed for the experimental design in this study, utilizing standardized techniques and analytical instruments. An impact apparatus was employed to be able deliver repeatable impact forces up to 369 kg·cm (320 in.·lb.). Cesium chloride was used as the surrogate powder contaminant in these experiments as it is extremely soluble in water and is even more so in the acidic media used to leach/dissolve the air filters for concentration analysis using mass spectrometry The developed approach leveraged multiple international standards and historical documents in an attempt to recreate a valid testing system that can be used for future analysis and to analyze mitigation factors such as contamination fixative technologies. The current ARFs were found to be consistent with the original values in DOE-HDBK-3010, 3.47E-4 and 4E-4, respectively.