ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Abdelfatah Abdelmaksoud, Asmaa Gamal, Ahmed R. Adly
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 286-297
Research Article | doi.org/10.1080/00295450.2024.2325739
Articles are hosted by Taylor and Francis Online.
The primary goals of the engineering design for nuclear reactors involve safeguarding the integrity of the reactor core. Preserving the integrity of the cladding material is especially crucial, as it serves as the initial defense against the potential dangers posed by radioactive materials. In this work, an accident analysis of core cooling pump power transients of different ratios of the nominal pump power in a typical material test reactor is conducted. Phase failure is a very common electrical fault experienced by three-phase motors. Pump power reduction can be initiated due to several causes, like phase failure, voltage reduction, winding failure, and other causes. The nuclear reactor analysis code PARET/ANL version 7.6 is used to carry out these calculations.
The accident scenario began with the reactor operating steadily, then experiencing a transient in the core pump power. This caused the core flow rate to decrease and eventually stabilize at a lower level as the pump power decreased. Core cooling pump power variations ratios of 20%, 33.3%, 50%, and 70% of the nominal pump power are considered in this work. The accident analysis is conducted under the availability and unavailability of reactor safety systems. Reactor safety parameters are reported for all cases of the core pump power variations.