ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Tengfei Zhu, Yang Liu, Xiaoping Ouyang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 54-65
Research Article | doi.org/10.1080/00295450.2024.2318049
Articles are hosted by Taylor and Francis Online.
Neutron tomography is an efficient nondestructive testing technique. As a complement to X-ray computed tomography, it has been widely used in various fields. Due to the difficulty of obtaining complete neutron projection data in a high-radiation environment and the high noise characteristics of neutron images, it is difficult to reconstruct a high-quality image using the conventional filtered-back projection (FBP) algorithm. Therefore, research on sparse-view reconstruction algorithms in neutron tomography is needed. To improve the quality of neutron three-dimensional reconstructed images, this paper proposes an algorithm that combines the Simultaneous Algebraic Reconstruction Technique (SART) with Fast Gradient Projection (FGP), where the FGP is an algorithm for image denoising and deblurring based on the discrete total variation (TV) minimization model. The algorithm proposed in this paper is compared with other algorithms (FBP, SART, and SART-TV) by simulated experimental data and real neutron experimental data. The experimental results show that the novel algorithm outperforms the other three algorithms in terms of denoising and retaining detailed structural information.