ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Tengfei Zhu, Yang Liu, Xiaoping Ouyang
Nuclear Technology | Volume 211 | Number 1 | January 2025 | Pages 54-65
Research Article | doi.org/10.1080/00295450.2024.2318049
Articles are hosted by Taylor and Francis Online.
Neutron tomography is an efficient nondestructive testing technique. As a complement to X-ray computed tomography, it has been widely used in various fields. Due to the difficulty of obtaining complete neutron projection data in a high-radiation environment and the high noise characteristics of neutron images, it is difficult to reconstruct a high-quality image using the conventional filtered-back projection (FBP) algorithm. Therefore, research on sparse-view reconstruction algorithms in neutron tomography is needed. To improve the quality of neutron three-dimensional reconstructed images, this paper proposes an algorithm that combines the Simultaneous Algebraic Reconstruction Technique (SART) with Fast Gradient Projection (FGP), where the FGP is an algorithm for image denoising and deblurring based on the discrete total variation (TV) minimization model. The algorithm proposed in this paper is compared with other algorithms (FBP, SART, and SART-TV) by simulated experimental data and real neutron experimental data. The experimental results show that the novel algorithm outperforms the other three algorithms in terms of denoising and retaining detailed structural information.