ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
David Anderson, Jamie Coble
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2373-2386
Research Article | doi.org/10.1080/00295450.2024.2376996
Articles are hosted by Taylor and Francis Online.
The economic operation of small modular reactors will partly rely on managing and reducing inspection and maintenance activities while supporting new operational paradigms like load-following. Turbine control valves throttle the steam from the steam generator into the steam turbine while maintaining the pressure within the steam generator at a constant set point. Degradation of these components could impact the ability to manage electrical power production.
Utilizing the Idaho National Laboratory Hybrid repository and the Oak Ridge National Laboratory TRANSFORM library developed for multiphysics simulations in Dymola/Modelica, an integral pressurized water reactor system was modeled based on the available specifications of the NuScale power module. The effects of various component degradation modes have been implemented into the model in order to simulate faulted plant data during both steady-state and load-following operations. The fault modes resemble different physical fault modes that may occur at an operating nuclear power plant; a leaking turbine control valve and a valve actuator failure due to loss of hydraulic pressure have been implemented.
A neural network autoencoder is employed in conjunction with statistical analysis, namely, simple signal thresholding (SST) or sequential probability ratio testing (SPRT), to identify the presence of a fault. Fuzzy logic is additionally employed in a novel and promising manner to classify the state of the system based on the cumulative sum of the neural network residuals. SST and SPRT are both successfully validated using healthy data and proved capable of identifying both fault types; fuzzy logic identified the false positives and classified the faulted data correctly.