ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Bhavya Reddy, Ezgi Gursel, Katy Daniels, Anahita Khojandi, Jamie Baalis Coble, Vivek Agarwal, Ronald Boring, Vaibhav Yadav, Mahboubeh Madadi
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2312-2330
Research Article | doi.org/10.1080/00295450.2024.2372217
Articles are hosted by Taylor and Francis Online.
The timely and accurate identification of incidents, such as human factor error, is important to restore nuclear power plants (NPPs) to a stable state. However, the identification of abnormal operating conditions is difficult because of the existence of multiple scenarios. In addition, to implement mitigation actions rapidly after an incident occurs, operators must accurately identify an incident by monitoring the trends of many variables. The mental burden posed by this can increase human error and cause failure in identifying incidents. Failure to identify incidents directly results in erroneous mitigation measures, which are detrimental to NPPs.
In this study, we leverage uncertainty-aware models to identify such errors and thereby increase the chances of mitigating them. We use the data collected from a physical test bed. The goal is to identify both certain and accurate models. For this, the two main aspects of focus in this study are explainable artificial intelligence (XAI) and uncertainty quantification (UQ). While XAI elucidates the decision pathway, UQ evaluates decision reliability. Their integration paints a comprehensive picture, signifying that understanding decisions and their confidence should be interlinked.
Thus, in this study we leverage UQ measures (e.g. entropy and mutual information) along with Shapley additive explanations to gain insights into the features contributing to both accuracy and uncertainty in error identification. Our results show that uncertainty-aware models combined with XAI tools can explain the artificial intelligence–prescribed decisions, with the potential of better explaining errors for the operators.