ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Ezgi Gursel, Bhavya Reddy, Katy Daniels, Jamie Baalis Coble, Mahboubeh Madadi, Vivek Agarwal, Ronald Boring, Vaibhav Yadav, Anahita Khojandi
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2299-2311
Research Article | doi.org/10.1080/00295450.2024.2338507
Articles are hosted by Taylor and Francis Online.
In nuclear power plants (NPPs), anomalies arising from sensors or human errors (HEs) can undermine the performance and reliability of plant operations. Anomaly detection models can be employed to detect sensor errors and HEs. Additionally, physics-informed machine learning models can utilize the known physics of the system, as described by mathematical equations, to ensure that sensor values are consistent with physical laws. Hence, we propose SPIDARman: System-level Physics-Informed Detection of Anomalies in Reactor Collected Data Considering Human Errors, a holistic physics-informed anomaly detection approach based on generative adversarial networks (GANs) to detect anomalies in both automatically collected sensor data and manually collected surveillance data. We test our approach on data collected from a flow loop testbed, showcasing its potential to detect anomalies. Results demonstrate that the proposed model performs better than the baseline GAN-based models in detecting sensor and surveillance anomalies, suggesting the potential of physics-informed anomaly detection GAN models in NPPs.