ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ezgi Gursel, Bhavya Reddy, Katy Daniels, Jamie Baalis Coble, Mahboubeh Madadi, Vivek Agarwal, Ronald Boring, Vaibhav Yadav, Anahita Khojandi
Nuclear Technology | Volume 210 | Number 12 | December 2024 | Pages 2299-2311
Research Article | doi.org/10.1080/00295450.2024.2338507
Articles are hosted by Taylor and Francis Online.
In nuclear power plants (NPPs), anomalies arising from sensors or human errors (HEs) can undermine the performance and reliability of plant operations. Anomaly detection models can be employed to detect sensor errors and HEs. Additionally, physics-informed machine learning models can utilize the known physics of the system, as described by mathematical equations, to ensure that sensor values are consistent with physical laws. Hence, we propose SPIDARman: System-level Physics-Informed Detection of Anomalies in Reactor Collected Data Considering Human Errors, a holistic physics-informed anomaly detection approach based on generative adversarial networks (GANs) to detect anomalies in both automatically collected sensor data and manually collected surveillance data. We test our approach on data collected from a flow loop testbed, showcasing its potential to detect anomalies. Results demonstrate that the proposed model performs better than the baseline GAN-based models in detecting sensor and surveillance anomalies, suggesting the potential of physics-informed anomaly detection GAN models in NPPs.