ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Plans for Poland’s first nuclear power plant continue to progress
Building Poland’s nuclear program from the ground up is progressing with Poland’s first nuclear power plant project: three AP1000 reactors at the Choczewo site in the voivodeship of Pomerania.
The Polish state-owned utility Polskie Elektrownie Jądrowe has announced some recent developments over the past few months, including turbine island procurement and strengthened engagement with domestic financial institutions, in addition to new data from the country’s Energy Ministry showing record‑high public acceptance, which demonstrates growing nuclear momentum in the country.
Krishna Moorthi Sankar, Preet M. Singh
Nuclear Technology | Volume 210 | Number 11 | November 2024 | Pages 2074-2090
Research Article | doi.org/10.1080/00295450.2024.2309600
Articles are hosted by Taylor and Francis Online.
It has been widely acknowledged that the presence of impurities in molten fluoride salt can alter the salt/material interactions. However, the effects of various impurities such as oxides, metal fluorides, reducing impurities, etc., on the behavior of nuclear-grade graphite in molten fluoride salts have not been reported. This study focuses on understanding the effects of various oxidizing and reducing impurities on the wetting and infiltration behavior of molten FLiNaK salt for nuclear-grade IG-110 graphite.
Our results suggest that different impurities can cause different effects on nuclear graphite–molten salt interactions, with some impurities leading to significant degradation of the graphite. Our results demonstrate that certain impurities, such as Cr2O3 and CrF3, lead to a limited increase in wetting and infiltration of molten salt into nuclear graphite, while impurities such as Li2O lead to significantly increased wetting and infiltration throughout the cross section of the graphite specimen. Certain impurities, such as Li, can also lead to significant degradation of the graphite in the salt, with the extent of degradation increasing with the increase in the quantity of Li added.
Our results also demonstrate that firing of IG-110 graphite at 900°C under a reducing atmosphere made the graphite surface resistant to wetting by molten FLiNaK salt, as compared to the nonfired sample.