ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
Jamal-Eddin Assaf, Zuheir Ahmad
Nuclear Technology | Volume 210 | Number 10 | October 2024 | Pages 1914-1924
Research Article | doi.org/10.1080/00295450.2024.2304913
Articles are hosted by Taylor and Francis Online.
A computer program was developed using the MATLAB programming language to simulate the electronics readout for a radiation detector system. The function of each stage of this system is described by a mathematical model in the Laplace domain. The electrical signals have been shown and analyzed at two main outputs of the system. They are described according to their related circuit parameters. The obtained results of the simulation can be used to achieve a best design of the concerned circuits and to provide appropriate details about the system operation. Validation of the simulated signals by comparison with available experimental results has been achieved.