ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Monica Pham, Victor Petrov, Annalisa Manera, Emilio Baglietto
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1212-1222
Research Article | doi.org/10.1080/00295450.2023.2204989
Articles are hosted by Taylor and Francis Online.
Turbulent mixing of coolant streams can result in an oscillatory mixing phenomenon called thermal striping. These fluctuations have the potential to lead to anticipated thermal fatigue failures in advanced nuclear reactors. To predict thermal striping, robust and computationally affordable modeling tools that are capable of accurately representing complex turbulence are needed. Hybrid turbulence approaches, such as detached-eddy simulation and scale-adaptive simulation, have shown some success in resolving complex unsteady turbulence for massively separated flows, however the applicability of these models to internal flows is limited.
A STRUCTure-based (STRUCT) second-generation Unsteady Reynolds-Averaged Navier–Stokes turbulence model was recently proposed at the Massachusetts Institute of Technology to robustly extend the applicability of hybrid closures. In this work, the STRUCT model is evaluated using experimental data taken at the Reactor Cavity Cooling System separate-effects test facility at the University of Michigan. The experiments observed the interaction of parallel symmetric rectangular jets, and include measurements for mean profiles of velocity and Reynolds stresses. In the present work, the simulation results are assessed against mean profiles of velocity and Reynolds stresses, demonstrating the ability to reproduce the unsteadiness of the jets in close agreement with the measurements at considerably reduced computational cost.