ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Monica Pham, Victor Petrov, Annalisa Manera, Emilio Baglietto
Nuclear Technology | Volume 210 | Number 7 | July 2024 | Pages 1212-1222
Research Article | doi.org/10.1080/00295450.2023.2204989
Articles are hosted by Taylor and Francis Online.
Turbulent mixing of coolant streams can result in an oscillatory mixing phenomenon called thermal striping. These fluctuations have the potential to lead to anticipated thermal fatigue failures in advanced nuclear reactors. To predict thermal striping, robust and computationally affordable modeling tools that are capable of accurately representing complex turbulence are needed. Hybrid turbulence approaches, such as detached-eddy simulation and scale-adaptive simulation, have shown some success in resolving complex unsteady turbulence for massively separated flows, however the applicability of these models to internal flows is limited.
A STRUCTure-based (STRUCT) second-generation Unsteady Reynolds-Averaged Navier–Stokes turbulence model was recently proposed at the Massachusetts Institute of Technology to robustly extend the applicability of hybrid closures. In this work, the STRUCT model is evaluated using experimental data taken at the Reactor Cavity Cooling System separate-effects test facility at the University of Michigan. The experiments observed the interaction of parallel symmetric rectangular jets, and include measurements for mean profiles of velocity and Reynolds stresses. In the present work, the simulation results are assessed against mean profiles of velocity and Reynolds stresses, demonstrating the ability to reproduce the unsteadiness of the jets in close agreement with the measurements at considerably reduced computational cost.