ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Samyak S. Munot, Arun K. Nayak, Jyeshtharaj B. Joshi
Nuclear Technology | Volume 210 | Number 6 | June 2024 | Pages 985-1002
Research Article | doi.org/10.1080/00295450.2023.2273565
Articles are hosted by Taylor and Francis Online.
In some nuclear reactors, under accidental conditions, core debris forms a molten pool, which is later located in a core catcher. The core catcher proposed by the authors uses special refractory material to absorb enthalpy of corium so that temperatures are within 1500 K, which is possible to cool with side cooling and top flooding. Since performing a full-scale prototypic experiment is extremely challenging and complex because of the involvement of very high temperatures and the presence of radioactive materials, it is important to develop a Computational Fluid Dynamics (CFD) model capable of simulating coolability of the melt pool with the above cooling strategy. In the present work, a CFD model was developed for the above purpose and was benchmarked with experiments conducted under simulated conditions by the authors. The experiment involved the melting of about 25 L of sodium borosilicate glass at about 1473 K and cooling it in a scaled-down core catcher model. In the presence of decay heat inside the melt pool, turbulent natural convection plays an important role in the temperature distribution inside the melt pool and on the vessel walls. For this, we used different turbulence models. Comparisons among the Standard k-ε, Shear Stress Transport (SST) k-ω, and two-dimensional (2D) Large Eddy Simulation (LES) turbulence models show that SST k-ω and 2D LES turbulences are found to be in good agreement with the experimental results for the temperature distribution in the melt pool, and SST k-ω is found to be computationally less expensive than 2D LES. In general, the CFD model is capable of simulating heat transfer with phase changes inside the heat-generating melt pool. In view of this, the model can be further extended to include cooling of the melt pool in the prototype core catcher. The evolution of crust formation has been investigated in detail using a CFD model.