ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Philseo Kim, Man-Sung Yim, Justin V. Hastings, Philip Baxter
Nuclear Technology | Volume 210 | Number 1 | January 2024 | Pages 84-99
Research Article | doi.org/10.1080/00295450.2023.2218241
Articles are hosted by Taylor and Francis Online.
Previous studies have explored the determinants of the nuclear proliferation levels (Explore, Pursue, and Acquire). However, these studies have weaknesses, including endogeneity and multicollinearity among the independent variables. This resulted in tentative predictions of a country’s nuclear program capabilities. The objective of this study is to develop a tool to predict future nuclear proliferation in a country, and thus facilitate its prevention. Specifically, we examine how applying deep learning algorithms can enhance nuclear proliferation risk prediction. We collected important determinants from the literature that were found to be significant in explaining nuclear proliferation. These determinants include economics, domestic and international security and threats, nuclear fuel cycle capacity, and tacit knowledge development in a country. We used multilayer perceptrons in the classification model. The results suggest that detecting a country’s proliferation behavior using deep learning algorithms may be less tentative and more viable than other existing methods. This study provides a policy tool to identify a country’s nuclear proliferation risk pattern. This information is important for developing efforts/strategies to hamper a potential proliferating country’s attempt toward developing a nuclear weapons program.