ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Akimaro Kawahara, Yukihiro Yonemoto, Hiroto Tazoe
Nuclear Technology | Volume 209 | Number 12 | December 2023 | Pages 1914-1928
Research Article | doi.org/10.1080/00295450.2023.2197944
Articles are hosted by Taylor and Francis Online.
This study reports the effects of the grid spacer with mixing vane (MV) on gas velocity for air single-phase flow and liquid film thickness for air-water two-phase annular flow in a 3 × 3 rod bundle channel. To investigate the effects of the shape of the spacers, three kinds of spacers were installed into the channel: spacer without MV (without MV), spacer with four MVs (4-MV30), and spacer with two MVs (2-MV30). The 4-MV30 and 2-MV30 had vanes that were inclined 30 deg from the vertical axis. Gas velocity was measured with a hot-wire anemometer and liquid film thickness was measured with the constant electric current method. From the gas velocity measurement, it was found that the irregularities in the velocity distribution became smaller toward downstream of the spacer. For the 2-MV30, the flow distribution was asymmetric and the flow was biased. From the liquid film thickness measurement, it was found that the liquid film thickness became thicker downstream of the spacer.