ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Zahra Papi, Farrokh Khoshahval
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1050-1067
Technical Paper | doi.org/10.1080/00295450.2023.2167462
Articles are hosted by Taylor and Francis Online.
There is an obvious effort to increase the burnup of used fuel assemblies in the Bushehr WWER-1000 Nuclear Power Plant (BNPP) in order to improve fuel utilization. The outcomes of this research could result in an increase in the BNPP reactor cycle length, which would lead to improved fuel consumption. Considering the lack of uranium resources and the planning to use new types of fuel in the BNPP, the use of integrated burnable absorber (IBA) materials is of great importance. An analysis of the performance of various IBAs, including Gd2O3-UO2, Er2O3-UO2, and Dy2O3-UO2, as well as the standard (proposed by the designer) burnable absorber (BA) (CrB2Al) in the BNPP, and their impact on fuel neutronic characteristics has been performed. Five fuel assemblies: one without a BA fuel rod and four each containing standard BA gadolinia, erbia, and dysprosia fuel pins were investigated. The neutronic properties of BAs were evaluated by the infinite multiplication factor, reactivity swing, and power peaking factor dependence on fuel burnup. Gadolinia, with a concentration of 5%, has the greatest effect on initial reactivity with 10 893 pcm and the lowest effect on the reactivity swing with 0.277 Δk among the other BAs, which leads to selecting the most appropriate BA for improving reactor core stabilities and enhancing operational safety. The gadolinium IBA extends the cycle burnup by about 1 GWd/tonne U compared to the standard BA. At the beginning of the cycle, erbium has a more uniform power distribution than the standard BA; however, at the end of the cycle, gadolinia has a more uniform power distribution.