ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Yoshikazu Tamauchi, Takashi Kodama, Naoya Sato, Keita Saito, Takahiro Chikazawa
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 622-635
Technical Note | doi.org/10.1080/00295450.2022.2130659
Articles are hosted by Taylor and Francis Online.
As an explosion of radiolitically generated hydrogen is listed as a type of severe accident in the new regulation for nuclear fuel cycle facilities, it is important to evaluate the realistic source term of this type of accident. The airborne release fraction (ARF) is a key parameter in evaluating the source term of a hydrogen explosion. Therefore, a pressurization experiment and a hydrogen explosion experiment that induced a hydrogen explosion have been performed. As a result, the ARFs obtained from the pressurization experiment and hydrogen explosion experiment were approximately 1 × 10−5 and 1 × 10−6, respectively. There was no marked difference in the pressure dependency and liquid droplet particle size between the pressurization and hydrogen explosion experiments.