ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Hang Xiao, Alex Hines, Fan Zhang, Jamie B. Coble, J. Wes Hines
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 419-436
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2073949
Articles are hosted by Taylor and Francis Online.
Industrial components and systems undergo degradation in process operations. Prognostics and health management (PHM) is a process to assess and predict health conditions of components and can be applied to condition-based monitoring and maintenance. PHM is commonly utilized to analyze the health condition of a single lifecycle until failure. When maintenance occurs, degradation can be removed, and the PHM model can be restarted with new parameters related to the expected postmaintenance conditions. Maintenance actions, mostly imperfect repairs, may not entirely reset the condition to as good as new, and further degradation may occur at a higher rate. Maintenance repairs should be considered in prognostic models to predict component health more accurately.
Furthermore, processes typically have more than one component that degrade and influence process measurements. The dependence of process measurements to multiple fault modes and related degradation can make individual component health monitoring complex. Commonly, faults and their related effects on process parameters must be isolated. In these cases, the diagnostics and prognostics framework should handle unsynchronized failure and maintenance reinitialization of different components for multiple fault processes. This research paper presents the Maintenance-Dependent Monitoring and Prognostics Model (MDMPM) to detect anomalies, decouple faults for different components, and predict future health conditions to calculate remaining useful life (RUL). The model is demonstrated with semisimulated nuclear power plant (NPP) data, with simultaneous condenser pump degradation and condenser tube fouling. The MDMPM shows a reliable prediction of RULs of NPP maintenance-dependent processes with interacting component degradation modes.