ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
F.-X. Ouf, M. De Mendonca Andrade, H. Feuchter, S. Duval, C. Volkringer, T. Loiseau, F. Salm, P. Ainé, L. Cantrel, A. Gil-Martin, F. Hurel, C. Lavalette, P. March, P. Nerisson, J. Nos, L. Bouilloux
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 169-192
Technical Paper | doi.org/10.1080/00295450.2022.2129274
Articles are hosted by Taylor and Francis Online.
Experimental results are reported on the airborne release, under fire conditions, of hazardous materials dissolved in a mixture of organic solvents [tributylphosphate (TBP) and hydrogenated tetrapropylene (HTP)] representative of the nuclear fuel recycling process. Cerium and ruthenium have been considered, respectively, as stable and volatile fission products that eventually could be released as airborne particles during thermal degradation of contaminated and inflammable liquids. Airborne release fractions (ARFs) and their experimental uncertainties have been determined. Considering fire involving contaminated organic solvents, higher ARFs are reported for ruthenium Ru(+III) (0.99 ± 1.20%) in comparison with cerium [0.22 ± 0.31% and 0.20 ± 0.28% for Ce(+III) and Ce(+IV), respectively]. This discrepancy is partially due to the volatility of ruthenium formed under these conditions. Considering configurations involving an aqueous nitric acid phase placed below contaminated solvents, boiling of this phase enhances the release of contaminant materials: 1.78 ± 1.06% and 1.01 ± 1.31% for Ce(+III) and Ce(+IV), respectively, and 12.41 ± 29.45% for Ru(+III). Analysis of the size distribution, morphology, and chemical composition of the released particles and droplets emitted during HTP/TBP bubble collapse are reported, highlighting the contribution of bubble bursting at the solvent surface to airborne release.