ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Richard L. Reed, Eva C. Uribe, Louise G. Evans
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 105-114
Technical Paper | doi.org/10.1080/00295450.2022.2109098
Articles are hosted by Taylor and Francis Online.
This work presents a novel monitoring method for detecting material loss from the decay inventory of the molten salt breeder reactor (MSBR) by monitoring for changes to the system dynamics using an isotopic ratio. The isotopic masses in the decay inventory of a MSBR were simulated under several material loss scenarios. In each case, the ratio of 231Pa to 233Pa served as a sensitive and lasting indicator of material loss. This isotope ratio quickly decreased outside the normal range after a material loss, and the ratio remained depressed for several years after the loss. The dynamics of this ratio were driven by the periodic batch discard from the decay inventory every 220 days, which was specified in the MSBR design to periodically remove fission product buildup. For this method, isotopic ratios were found to be rapid and enduring indicators of inventory change if they comprise a pair with a short half-life (e.g., 233Pa) and a long half-life (e.g., 231Pa) relative to the effective half-life induced by the driving system process (e.g., the batch discard cycle). Using such an isotope pair enabled a method to monitor for changes to the effective half-life of the system and by extension changes to the system inputs and outputs.