ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Richard L. Reed, Eva C. Uribe, Louise G. Evans
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 105-114
Technical Paper | doi.org/10.1080/00295450.2022.2109098
Articles are hosted by Taylor and Francis Online.
This work presents a novel monitoring method for detecting material loss from the decay inventory of the molten salt breeder reactor (MSBR) by monitoring for changes to the system dynamics using an isotopic ratio. The isotopic masses in the decay inventory of a MSBR were simulated under several material loss scenarios. In each case, the ratio of 231Pa to 233Pa served as a sensitive and lasting indicator of material loss. This isotope ratio quickly decreased outside the normal range after a material loss, and the ratio remained depressed for several years after the loss. The dynamics of this ratio were driven by the periodic batch discard from the decay inventory every 220 days, which was specified in the MSBR design to periodically remove fission product buildup. For this method, isotopic ratios were found to be rapid and enduring indicators of inventory change if they comprise a pair with a short half-life (e.g., 233Pa) and a long half-life (e.g., 231Pa) relative to the effective half-life induced by the driving system process (e.g., the batch discard cycle). Using such an isotope pair enabled a method to monitor for changes to the effective half-life of the system and by extension changes to the system inputs and outputs.