ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Emory D. Collins, Robert N. Morris, Joel L. McDuffee, Padhraic L. Mulligan, Jeffrey S. Delashmitt, Steven R. Sherman, Raymond J. Vedder, Robert M. Wham
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S18-S25
Technical Paper | doi.org/10.1080/00295450.2021.2021769
Articles are hosted by Taylor and Francis Online.
An alternative target design with potential improvements, including a major increase in 238Pu production rate and annual capacity; fewer targets to be fabricated, irradiated, and processed; and a significant replacement of a large volume of caustic-nitrate, aluminum-bearing radioactive liquid waste with a smaller volume of solid metal waste, has been conceived and evaluated using reactor physics and thermal-hydraulic analyses. The alternative target design uses pressed pellets of 237NpO2, sintered to 92% to 93% of theoretical density, and stacked inside a Zircaloy-4 cladding tube. Four test targets were fabricated, irradiated, and examined. No melting or other potential problems were indicated. Projections from measured constituents indicated annual production could be increased by a factor of ~2, and the number of targets required to be fabricated, irradiated, and processed could be reduced by a factor of ~5.