ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Caishan Jiao, Hao Wang, Yaorui Li, Meng Zhang, Yang Gao, Mingjian He
Nuclear Technology | Volume 208 | Number 12 | December 2022 | Pages 1858-1866
Technical Paper | doi.org/10.1080/00295450.2022.2081483
Articles are hosted by Taylor and Francis Online.
With the rapid development of nuclear power, increasing attention has been paid to the treatment of low-level radioactive wastewater (LLRW). In this study, reverse osmosis (RO) and membrane distillation (MD) are used to treat LLRW containing Ce(III), U(VI), and Co(II). RO was used for the purification of LLRW. MD was used for further concentration of RO concentrate. The effect of the operating parameters, including operating pressure (0.6 to 1.4 MPa), feed pH (7 to 9), feed concentration (2 to 10 mg/L), feed temperature (50°C to 90°C), and feed flow rate (80 to 160 L/h) on the permeate flux and the rejection rate of the RO process and MD process was studied. The results demonstrate that it is very effective to use the RO process to treat LLRW containing Ce(III), U(VI), and Co(II), with the rejection rates of Ce(III), U(VI), and Co(II) higher than 99.97%, 99.98%, and 99.35%, respectively. The operating pressure has a significant effect on the permeate flux in the RO process. The permeate flux increases from 9.84 to 23.03 L/m2·h when the operating pressure increases from 0.6 to 1.4 MPa. The feed pH has an apparent influence on nuclide rejection. At the feed pH = 9, the rejection rates of Ce(III), U(VI), and Co(II) by the RO process can reach 99.99%, 99.99%, and 99.79%, respectively. MD can reject almost all the nuclides in the RO concentrate, with rejection rates consistently higher than 99.98%. Increasing the feed temperature and feed flow rate can result in a significant increase in the permeate flux, but has almost no effect on nuclide rejection in the MD process.