ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Anna-Elina Pasi, Mark R. St.-J. Foreman, Christian Ekberg
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1734-1744
Technical Paper | doi.org/10.1080/00295450.2022.2061258
Articles are hosted by Taylor and Francis Online.
The interactions between tellurium and organic material during a nuclear reactor accident are critical to source term estimations because of the possible formation of volatile species. Reactions taking place in the containment sump are of interest since these can lead to re-volatilization and increase the fission product source term. This paper presents results from experiments investigating the interaction of tellurium dioxide with three paint solvents—texanol ester, methyl isobutyl ketone, and toluene—under containment sump conditions. The experiments were performed by irradiating a mixed solution of tellurium dioxide and paint solvents at a dose rate of 4 kGy/h up to 300 kGy. The resulting samples were analyzed for tellurium concentration and speciation. Tellurium(IV) was found to reduce to metallic tellurium under irradiation when paint solvents were present. More importantly, several volatile organic tellurides were identified in the irradiated samples, which suggests that tellurium can form volatile species in sump conditions when in contact with dissolved paint solvents. This paper provides novel evidence of organic telluride formation in the sump and raises further interest in tellurium chemistry during a severe nuclear reactor accident.