ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
A trip abroad
Hash Hashemian president@ans.org
In my August column in Nuclear News, I reflected on the importance of ANS’s annual conferences for bringing together our nuclear community at the national level. In September, after speaking at Tennessee’s Nuclear Opportunities Workshop, I focused my NN column that month on the value of state-level conferences.
Also in September, alongside ANS Executive Director/CEO Craig Piercy, I shifted my focus to another key front in nuclear collaboration, the international stage, by attending the General Conference of the International Atomic Energy Agency in Vienna.
The timing of the IAEA’s General Conference could not have been better; it took place the same week the U.S. and U.K. kicked off a new wave of transatlantic partnerships in the nuclear sector between both government and industry. This fortuitous overlapping gave us a timely and concrete reminder of international collaboration’s unparalleled benefits.
The General Conference was an expectedly busy event. To cover as much ground as possible, Piercy and I took turns attending either the U.S. delegation meetings with other countries or the General Assembly of the IAEA, where the American Nuclear Society has a seat among other critical nongovernmental organizations.
We listened to presentations by several of the 180 IAEA member states, including, of course, the United States. Aside from ANS, the U.S. presence at the conference included U.S. Secretary of Energy Chris Wright, NRC Chair David Wright, and DOE Assistant Secretary of Nuclear Energy Ted Garrish.
U.S. representation was further bolstered by an industry delegation that included 65 participants from 32 companies, many of whom used the opportunity to report progress on their plans for the international expansion of their nuclear fleets. Meetings of that industry delegation were coordinated by the Nuclear Energy Institute.
Aside from the main conference, Piercy and I also attended the embedded meetings of the International Nuclear Society Council. INSC exists to facilitate knowledge-sharing and collaboration between 18 different member nuclear societies from around the world.
The INSC meetings within the General Conference brought together the presidents and senior members of those societies to give presentations and explore new opportunities. I made a presentation on the state of nuclear in North America, covering the latest developments and deployments in the U.S. and Canada.
This presentation emphasized the new nuclear lift in the U.S. that is being heavily supported by the Trump administration. I recapped the four executive orders issued by President Trump in May, the recent momentum at the DOE, and how these changes are capitalizing on a broader groundswell in both industry development and public support.
I also pointed out the success of our neighbor Canada in progressing on the first water-cooled small modular reactor in North America using BWRX-300 technology, which was supplied by an American firm and international partners—a perfect symbol of the value of global nuclear collaboration.
In all, I have now represented ANS at the state, national, and international levels, gaining useful insight into the work that needs to be done at each. From this vantage point, it’s clear to me that the path forward from the country to the globe is to, above all else, keep working together and supporting each other to bring about the next age of nuclear.
Joseph W. Nielsen, Michael A. Reicheberger, Bryon J. Curnutt, Dong O. Choe, Irina Glagolenko, Jody Henley
Nuclear Technology | Volume 208 | Number 11 | November 2022 | Pages 1704-1720
Technical Paper | doi.org/10.1080/00295450.2022.2067448
Articles are hosted by Taylor and Francis Online.
One of the Advanced Test Reactor’s (ATR’s) functions is to irradiate and qualify nuclear fuels and materials. Due to the large number of experiment or test positions, the cost, and the limited number of vessel penetrations for instrumentation, in-core instrumentation for most experiments is not feasible. In such instances, modeling of experiment conditions using high-fidelity neutron transport codes can quantify such conditions as fission power density and fissile material burnup during irradiation. Validation of fissile material burnup can only be performed during post-irradiation examination, which typically occurs months—or even years—following irradiation. In most experiments, fission power density and fissile material burnup are directly proportional to the thermal neutron flux in the ATR. Additionally, fast neutrons are born from fission in the ATR core, affording a validation of power distribution within the reactor’s experiment locations. During each irradiation cycle, flux wires installed throughout the ATR can be used to validate computational models and determine an adjusted neutron flux for many of the experiment positions. The flux wires are installed as requested by the experiment sponsors in several of the ATR flux traps and consist of cobalt-aluminum alloy and nickel wires. Both kinds of wire enable measurements of the thermal and fast neutron flux in each experiment position. This paper presents the protocol for validating computational models for experiments using flux wires installed in the experiment positions, as well as the results for flux wires placed in the ATR safety rod guide tubes. The best estimate is typically referred to as the adjusted neutron flux. The calculated unadjusted neutron flux is referred to as the a priori neutron flux. The methods presented here provide the adjusted neutron flux, given both the measured and a prior fluxes. The adjusted flux is compared to the a priori flux to provide a bias in the calculated results and the adjusted results. Two model types are evaluated; an eigenvalue case and fixed-source case. Both conditions demonstrate relatively good agreement. The uncertainty for the adjusted flux ranges from 5% to 6% for all three energy ranges. For the eigenvalue case, the bias between the a priori and the adjusted neutron flux is within the statistical uncertainty in all but two wire pairs. For the fixed-source model, four wire pairs are outside of the uncertainty of the adjusted flux. The bias between the a priori and adjusted fast neutron flux is outside of the statistical range for four wires in the eigenvalue case and nine wires in the fixed-source model. As the differences are not contained to one flux trap, it can be assumed that the biases in the calculated models are attributed to localized effects in modeling. An additional evaluation was performed for the ATF-1 experiment in the ATR “I” positions. The differences between the adjusted and a priori are more pronounced in two of the test positions, indicating that additional model evaluation is needed, in particular in the region near the boundary of the ATR model. It is also noted that the eigenvalue model provides slightly better results in the flux trap positions. The fixed-source model is more computationally efficient though produces less accurate results; the differences in some cases are negligible. The work documented in this paper provides a methodology that extends the validation protocol established at the ATR for flux measurements to validate computational models with limited measurement capability during a cycle.