ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Zhibo Zhang, Huai-En Hsieh, Yuan Gao, Shiqi Wang, Zhe Zhou
Nuclear Technology | Volume 208 | Number 10 | October 2022 | Pages 1605-1618
Technical Paper | doi.org/10.1080/00295450.2022.2053927
Articles are hosted by Taylor and Francis Online.
This paper discusses the estimation of heat transfer characteristics using different SiO2 nanofluid conditions on a downward-facing heating surface. Two sizes of SiO2 nanoparticles (20 and 50 nm) were selected for the nanofluids. The influence of the critical heat flux (CHF) for different nanofluid concentrations was also compared and investigated. We observed that the CHF changed with the concentration of nanofluids, which reached the maximum enhancement at 0.1 g/L but decreased at 0.12 g/L. Compared with reverse osmosis water, the 50- and 20-nm SiO2 nanofluids exhibited enhancements of approximately 43% and 49%, respectively. The heating surface was characterized and the deposition of nanoparticles was observed. After pool boiling, the wettability of the heating block and the roughness changed. As the concentration increased, the CHF decreased after attaining the maximum value, which was due to the characteristics of the downward-facing heating surface and the decrease in the nucleation points on the heating block surface.