ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Arvind Sundaram, Yeni Li, Hany Abdel-Khalik
Nuclear Technology | Volume 208 | Number 9 | September 2022 | Pages 1365-1381
Technical Paper | doi.org/10.1080/00295450.2022.2027147
Articles are hosted by Taylor and Francis Online.
The widespread digitization of critical industrial systems such as nuclear reactors has led to the development of digital twins and/or the adoption of artificial intelligence techniques for simulating baseline behavior and performing predictive maintenance. Such analytical tools, referred to as anomaly detection techniques, rely on features extracted from data that describe the underlying physical process. While these anomaly detection systems may work well with simulated data, their real-world applications are often hindered by the presence of noise. In some cases, noise may obscure subtle anomalies that may carry information about incipient stages of system faults. These subtle variations may also be the result of malicious intrusion such as so-called false data injection attack, equipment degradation causing sensor drift, or other natural disturbances in the process or the sensors. Consequently, there is a need to extract features that are robust to noise and also denoise data in a manner that aids machine-learning (ML) tools in diagnostics. In this regard, this paper presents a singular value decomposition–based statistical data–driven approach for feature extraction, denoted by randomized window decomposition, to capture the underlying physics of the system. Additionally, the features are used to denoise data to reveal subtle anomalies while also preserving relevant information for ML algorithms. The denoising algorithm is demonstrated using a RELAP5 simulation of a representative nuclear reactor with virtual noise.