ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Brian Mays, Lewis Lommers, Stacy Yoder, Farshid Shahrokhi
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1311-1323
Technical Paper | doi.org/10.1080/00295450.2021.1947664
Articles are hosted by Taylor and Francis Online.
The inherent passive heat removal characteristics of modular High Temperature Gas-Cooled Reactors (HTGRs) are well known. Modular HTGRs use a combination of coated-particle fuel, ceramic core materials, core geometry, and power level to maintain acceptable fuel temperatures for all credible operating and accident conditions. Heat from the reactor vessel is radiated to a passive reactor cavity cooling system (RCCS), which removes excess heat from the reactor cavity. The RCCS for Framatome’s Steam Cycle–High Temperature Gas-Cooled Reactor (SC-HTGR) is a highly reliable, redundant system. Similar to most other modular HTGR concepts, RCCS failure is not considered credible for any accident scenario. Nonetheless, reactor module performance with a compromised RCCS is still of interest. Evaluation of such beyond-design-basis scenarios supports safety assessment of extremely low probability beyond-design-basis events (BDBEs) as well as the development of RCCS design requirements and plant emergency procedures. This study evaluates the performance of the SC-HTGR during a long-term depressurized loss of forced circulation event without RCCS operation. Boundary conditions are varied to determine their effect on reactor temperatures. Safety and investment risk considerations are addressed. The results of this study indicate that the safety impact is modest since fuel temperatures remain within their limits. However, the investment risk is more significant since vessel temperatures could significantly exceed design limits for these hypothetical BDBEs.