ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Mustafa Alper Yildiz, Elia Merzari, Thien Nguyen, Yassin A. Hassan
Nuclear Technology | Volume 208 | Number 8 | August 2022 | Pages 1279-1289
Technical Paper | doi.org/10.1080/00295450.2022.2049964
Articles are hosted by Taylor and Francis Online.
This paper presents a direct numerical simulation (DNS) and proper orthogonal decomposition (POD) of the flow in a randomly packed pebble bed. Nek5000, a spectral-element computational fluid dynamics code, was used to develop the DNS fluid flow data, including first- and second-order statistics for an experimental randomly packed pebble bed. Turbulence budgets were also produced.
The flow domain consists of 147 pebbles enclosed by a bounding wall. In the present work, the Reynolds number is 1700 based on the hydraulic diameter and interstitial velocity. First- and second-order statistics were compared with the experimental data. The POD analysis was performed to identify dominant flow structures, especially in the wall channeling region.