ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Shanxue Xi, Haijun Li, Linxiang Li, Kun Wu, Guangwei Huang, Zungang Wang, Yiyun Zhang, Chunzhi Zhou
Nuclear Technology | Volume 208 | Number 5 | May 2022 | Pages 922-934
Technical Paper | doi.org/10.1080/00295450.2021.1982361
Articles are hosted by Taylor and Francis Online.
The fabrication and experimental research of a GaN-Positive-Intrinsic-Negative (GaN-PIN) betavoltaic nuclear battery driven by an 63Ni radioisotope source and an SiC-Schottky betavoltaic nuclear battery driven by an 147Pm radioisotope source are introduced. The self-absorption effects of radioisotope sources (63Ni, 147Pm) are explored and analyzed by Monte Carlo simulation. The SiC-Schottky and GaN-PIN betavoltaic cells were fabricated, where the GaN-PIN devices include different areas, absorption layer thicknesses, and electrode structures. And the measured I–V results show that the power density of the GaN-PIN nuclear battery can exceed 4.3 nW/cm2, the open-circuit voltage can reach 1.25 V, and the energy conversion efficiency can reach 2.3%. And for the SiC-Schottky betavoltaic battery, the maximum output power and energy conversion efficiency are 0.67 pW/cm2 and 0.024%, respectively.