ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
P. C. Lai, R. J. Sheu
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 723-734
Technical Paper | doi.org/10.1080/00295450.2021.1938486
Articles are hosted by Taylor and Francis Online.
The characteristics of the radiation field around a consolidated interim spent nuclear fuel storage facility were investigated comprehensively through Monte Carlo simulations. Neutron and gamma-ray flux/dose contributions from multiple transport pathways, including direct, streaming, skyshine, groundshine, and multishine, were isolated using a modified version of the method that was originally developed by Oh et al. [J. Korean Phys. Soc., Vol. 69, 1057 (2016)] for the evaluation of neutron skyshine from a high-energy electron accelerator. The application of the methodology was demonstrated in this paper, and the flux/dose contributions of individual pathways were examined and compared. The results provided additional insight into how the radiation propagated from the source to off-site locations. The modified method for separating five transport pathways can provide valuable information for shielding optimization during the design phase and is generally applicable to Monte Carlo shielding analyses of other nuclear facilities.