ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
P. C. Lai, R. J. Sheu
Nuclear Technology | Volume 208 | Number 4 | April 2022 | Pages 723-734
Technical Paper | doi.org/10.1080/00295450.2021.1938486
Articles are hosted by Taylor and Francis Online.
The characteristics of the radiation field around a consolidated interim spent nuclear fuel storage facility were investigated comprehensively through Monte Carlo simulations. Neutron and gamma-ray flux/dose contributions from multiple transport pathways, including direct, streaming, skyshine, groundshine, and multishine, were isolated using a modified version of the method that was originally developed by Oh et al. [J. Korean Phys. Soc., Vol. 69, 1057 (2016)] for the evaluation of neutron skyshine from a high-energy electron accelerator. The application of the methodology was demonstrated in this paper, and the flux/dose contributions of individual pathways were examined and compared. The results provided additional insight into how the radiation propagated from the source to off-site locations. The modified method for separating five transport pathways can provide valuable information for shielding optimization during the design phase and is generally applicable to Monte Carlo shielding analyses of other nuclear facilities.