ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Huan Zhang, Shelly X. Li, Michael F. Simpson
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 494-502
Technical Paper | doi.org/10.1080/00295450.2021.1913031
Articles are hosted by Taylor and Francis Online.
This study addressed the problem of measuring the total mass of molten salt in a nuclear system such as a nuclear fuel electrorefiner or a molten salt reactor. In theory, soluble tracers can be added to an unknown amount of salt. Measurement of the tracer concentration after allowing time to homogenize the salt and elemental analysis can be used to calculate the total mass of salt in the system. In this study, the mass of a molten salt mixture of equimolar NaCl-CaCl2 was measured using this method for several sequential additions of the tracer salt. Two different tracers (CeCl3 and KCl) with known mass were used in determining the total mass of NaCl-CaCl2 salt in a crucible at 650°C. By limiting the method to tracer concentrations higher than 1.1 wt%, the average mass determination error was 2.39% and 1.82% for CeCl3 and KCl, respectively. Mass estimations were mostly high by this amount compared to the actually known mass.