ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
Huan Zhang, Shelly X. Li, Michael F. Simpson
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 494-502
Technical Paper | doi.org/10.1080/00295450.2021.1913031
Articles are hosted by Taylor and Francis Online.
This study addressed the problem of measuring the total mass of molten salt in a nuclear system such as a nuclear fuel electrorefiner or a molten salt reactor. In theory, soluble tracers can be added to an unknown amount of salt. Measurement of the tracer concentration after allowing time to homogenize the salt and elemental analysis can be used to calculate the total mass of salt in the system. In this study, the mass of a molten salt mixture of equimolar NaCl-CaCl2 was measured using this method for several sequential additions of the tracer salt. Two different tracers (CeCl3 and KCl) with known mass were used in determining the total mass of NaCl-CaCl2 salt in a crucible at 650°C. By limiting the method to tracer concentrations higher than 1.1 wt%, the average mass determination error was 2.39% and 1.82% for CeCl3 and KCl, respectively. Mass estimations were mostly high by this amount compared to the actually known mass.