ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Atomic museum benefits from L&A donation
Longenecker & Associates has announced a $500,000 pledge from John and Bonnie Longenecker to the National Atomic Testing Museum in Las Vegas, Nev. The contribution will strengthen the museum’s missions to inform the public about America’s national security legacy and current programs and to inspire students, educators, and young professionals pursuing careers in science, technology, engineering, and mathematics.
William Chuirazzi, Aaron Craft, Burkhard Schillinger, Nicholas Boulton, Glen Papaioannou, Amanda Smolinski, Kyrone Riley, Andrew Smolinski, Michael Ruddell
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 455-467
Technical Paper | doi.org/10.1080/00295450.2021.1905471
Articles are hosted by Taylor and Francis Online.
Scintillator screens consisting of a dysprosium neutron converter and various scintillator materials were tested in the Heinz Maier-Leibnitz Zentrum Forschungsreaktor München II (FRM II) ANTARES cold neutron beam with the goal of finding a suitable screen for digital transfer method neutron radiography. This work explores the cold neutron response of 16 scintillator screens, 7 of which were previously tested with thermal neutrons. Light yield, signal-to-noise ratio (SNR), and spatial resolution were measured to compare the scintillator screens and determine which were best suited for digital transfer method neutron radiography. Screens with a zinc sulfide (ZnS:Cu) scintillator were most suitable for digital transfer method radiography based on light output, spatial resolution, SNR, and gamma-ray insensitivity. Spatial resolutions between 65 and 220 μm were measured. The top-performing screens were then used to demonstrate the feasibility of a new digital transfer method neutron radiography to image highly radioactive (8.84 Sv/h at ≈1 cm) nuclear fuel at Idaho National Laboratory’s Neutron Radiography reactor (NRAD). These results suggest that digital transfer method neutron radiography can be used to indirectly image highly radioactive objects and/or use neutron beams with a large gamma-ray content on a timescale of ~10 min/image (~144 images/day), much faster than the >10 h required using the current transfer method with film (limited to ~14 radiographs/day at NRAD).