ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Yuan Gao, Huai-En Hsieh, Huifang Miao, Zhe Zhou, Zhibo Zhang
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 222-231
Technical Paper | doi.org/10.1080/00295450.2021.1899552
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) is an important heat transfer deterioration phenomenon during boiling heat transfer. It has been extensively studied, especially in the field of nuclear energy. Previous research has found that downward-facing heat transfer is worse than upward-facing and should be paid more attention. In this paper, the boiling heat transfer process under different flow rates and inlet distances is investigated. Seven experimental cases were made including a pool boiling case. The experiment studied the effect of inlet distances under small flow rates, which is not covered by previous research. Analysis of the CHF mechanism included surface temperature curves, boiling curves, bubble behaviors, and heat transfer coefficient. The fluctuation of the surface temperature of forced convention cases was observed due to the bubbles sliding along the heating surface. The phenomenon of vapor film fragmentation could also be found. The results show that even at small flow rates, CHF occurring time is postponed and the CHF value increases. Reducing inlet distance or increasing flow rate can both promote boiling heat transfer, thereby enhancing CHF.