ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Yuan Gao, Huai-En Hsieh, Huifang Miao, Zhe Zhou, Zhibo Zhang
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 222-231
Technical Paper | doi.org/10.1080/00295450.2021.1899552
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) is an important heat transfer deterioration phenomenon during boiling heat transfer. It has been extensively studied, especially in the field of nuclear energy. Previous research has found that downward-facing heat transfer is worse than upward-facing and should be paid more attention. In this paper, the boiling heat transfer process under different flow rates and inlet distances is investigated. Seven experimental cases were made including a pool boiling case. The experiment studied the effect of inlet distances under small flow rates, which is not covered by previous research. Analysis of the CHF mechanism included surface temperature curves, boiling curves, bubble behaviors, and heat transfer coefficient. The fluctuation of the surface temperature of forced convention cases was observed due to the bubbles sliding along the heating surface. The phenomenon of vapor film fragmentation could also be found. The results show that even at small flow rates, CHF occurring time is postponed and the CHF value increases. Reducing inlet distance or increasing flow rate can both promote boiling heat transfer, thereby enhancing CHF.