ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Yuan Gao, Huai-En Hsieh, Huifang Miao, Zhe Zhou, Zhibo Zhang
Nuclear Technology | Volume 208 | Number 2 | February 2022 | Pages 222-231
Technical Paper | doi.org/10.1080/00295450.2021.1899552
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) is an important heat transfer deterioration phenomenon during boiling heat transfer. It has been extensively studied, especially in the field of nuclear energy. Previous research has found that downward-facing heat transfer is worse than upward-facing and should be paid more attention. In this paper, the boiling heat transfer process under different flow rates and inlet distances is investigated. Seven experimental cases were made including a pool boiling case. The experiment studied the effect of inlet distances under small flow rates, which is not covered by previous research. Analysis of the CHF mechanism included surface temperature curves, boiling curves, bubble behaviors, and heat transfer coefficient. The fluctuation of the surface temperature of forced convention cases was observed due to the bubbles sliding along the heating surface. The phenomenon of vapor film fragmentation could also be found. The results show that even at small flow rates, CHF occurring time is postponed and the CHF value increases. Reducing inlet distance or increasing flow rate can both promote boiling heat transfer, thereby enhancing CHF.