ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Anthony Birri, Christian M. Petrie, Thomas E. Blue
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1865-1872
Technical Paper | doi.org/10.1080/00295450.2020.1844532
Articles are hosted by Taylor and Francis Online.
This paper describes the parametric analysis of an optical fiber–based gamma thermometer (OFBGT) that is intended to be used to infer the power distribution in the Ohio State University Research Reactor (OSURR). The OFBGT measures the radial temperature difference between an optical fiber that is within the thermal mass and an optical fiber that is within the capillary tube that is attached to the exterior of the outer sheath of the OFBGT. This gas gap acts as a thermal resistance to volumetric gamma heating of the OFBGT thermal mass. Of the six that are analyzed, one is deemed most appropriate for operation in the OSURR Central Irradiation Facility. This design produces a maximum of ~50°C at full reactor power (450 kW). A comparison of the six OFBGT designs generally shows how modifications of the design that increase suffer from decreased spatial resolution.