ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Anthony Birri, Christian M. Petrie, Thomas E. Blue
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1865-1872
Technical Paper | doi.org/10.1080/00295450.2020.1844532
Articles are hosted by Taylor and Francis Online.
This paper describes the parametric analysis of an optical fiber–based gamma thermometer (OFBGT) that is intended to be used to infer the power distribution in the Ohio State University Research Reactor (OSURR). The OFBGT measures the radial temperature difference between an optical fiber that is within the thermal mass and an optical fiber that is within the capillary tube that is attached to the exterior of the outer sheath of the OFBGT. This gas gap acts as a thermal resistance to volumetric gamma heating of the OFBGT thermal mass. Of the six that are analyzed, one is deemed most appropriate for operation in the OSURR Central Irradiation Facility. This design produces a maximum of ~50°C at full reactor power (450 kW). A comparison of the six OFBGT designs generally shows how modifications of the design that increase suffer from decreased spatial resolution.