ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
IAEA, PNNL test new uranium enrichment monitor
A uranium enrichment monitor developed by a team at Pacific Northwest National Laboratory will soon be undergoing testing for nonproliferation applications at the International Atomic Energy Agency Centre of Excellence for Safeguards and Non-Proliferation in the United Kingdom. A recent PNNL news article describes how the research team, led by nuclear physicist James Ely, who works within the lab’s National Security Directorate, developed the UF6 gas enrichment sensor (UGES) prototype for treaty verification and other purposes.
J. C. Kang, J. S. Jeong, D. H. Lee, T. L. George, J. W. Lane, S. G. Thomasson
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1851-1864
Technical Paper | doi.org/10.1080/00295450.2020.1858628
Articles are hosted by Taylor and Francis Online.
GOTHIC and RELAP5 have been coupled to model the containment and passive containment cooling system (PCCS) for the Korean advanced containment designs. In the coupled system, GOTHIC models the containment and the outer shell (mid tube wall to outside surface) of the PCCS heat exchanger tubes and RELAP5 models the inner shell (inside surface to mid tube wall) and the coolant loop to the external heat sink. The coupling approach leverages the modeling capabilities of RELAP5 for piping load analysis and the capabilities of GOTHIC for containment and heat/mass transfer with noncondensing gases. With the coupled model, it is possible to apply the thermal-hydraulic load analysis on the PCCS supply and return piping considering the containment conditions predicted by GOTHIC during a loss-of-coolant accident (LOCA). This paper describes the coupling approach, a coupling dynamic linked library for GOTHIC, modifications to RELAP5, and verification of the coupling. Last, demonstration results from a LOCA simulation with four PCCS trains is provided and the results of the GOTHIC/RELAP5–coupled model are compared to a GOTHIC-only result, where GOTHIC was used to model both the containment and the PCCS.