ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. C. Kang, J. S. Jeong, D. H. Lee, T. L. George, J. W. Lane, S. G. Thomasson
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1851-1864
Technical Paper | doi.org/10.1080/00295450.2020.1858628
Articles are hosted by Taylor and Francis Online.
GOTHIC and RELAP5 have been coupled to model the containment and passive containment cooling system (PCCS) for the Korean advanced containment designs. In the coupled system, GOTHIC models the containment and the outer shell (mid tube wall to outside surface) of the PCCS heat exchanger tubes and RELAP5 models the inner shell (inside surface to mid tube wall) and the coolant loop to the external heat sink. The coupling approach leverages the modeling capabilities of RELAP5 for piping load analysis and the capabilities of GOTHIC for containment and heat/mass transfer with noncondensing gases. With the coupled model, it is possible to apply the thermal-hydraulic load analysis on the PCCS supply and return piping considering the containment conditions predicted by GOTHIC during a loss-of-coolant accident (LOCA). This paper describes the coupling approach, a coupling dynamic linked library for GOTHIC, modifications to RELAP5, and verification of the coupling. Last, demonstration results from a LOCA simulation with four PCCS trains is provided and the results of the GOTHIC/RELAP5–coupled model are compared to a GOTHIC-only result, where GOTHIC was used to model both the containment and the PCCS.