ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Yang Hong Jung, Hee Moon Kim
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1842-1850
Technical Paper | doi.org/10.1080/00295450.2020.1845057
Articles are hosted by Taylor and Francis Online.
This study characterizes a failed discharged fuel rod with 53 000 MWd/tonne U from a nuclear power plant in Korea. Chalk River Unidentified Deposits (CRUD) and the oxide layer were observed using an electron probe micro-analyzer (EPMA, SX-50 R, CAMECA, France) with wavelength dispersive (X-ray) spectroscopy. A normally irradiated cladding specimen was analyzed for comparison with the failed fuel rod. The analysis revealed an oxide layer with a thickness of about 10 μm and double-stratified agglomerates of CRUD species shapes. In contrast, sound fuel rods irradiated under conditions similar to failed fuel showed clusters in which Fe, Ni, and Cr were distributed. The main elements constituting the CRUD material, notably Ni and Fe, were located in the same position. Moreover, the thickness of the oxidized layer of the failed fuel rod was found to be significantly different from the thickness of the sound fuel rod.
Consequently, EPMA techniques offer the possibility of identifying and analyzing the CRUD phases and segregations in spent pressurized water reactor fuel. Although phases and segregations are small in terms of the amount expected to be present in background radiation, they nevertheless present a significant analytical challenge.