ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Rei Kimura, Shohei Kanamura, Yuya Takahashi, Kazuhito Asano
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1784-1792
Regular Technical Paper | doi.org/10.1080/00295450.2020.1843953
Articles are hosted by Taylor and Francis Online.
The small modular reactor (SMR) is considered one of the important energy sources for the realization of the de-carbonated society, especially SMR types that have 10 MW or less thermal power, called a microreactor or very small modular reactor (vSMR). Toshiba Energy Systems & Solutions has initiated the development of a multipurpose vSMR as a distributed energy source since 2017 called MoveluXTM (Mobile-Very-small reactor for Local Utility in X-mark).
In the current core design, a passive reactivity control device is required from the viewpoint of passive nuclear safety and operational cost reduction. The fundamental idea of vSMR passive reactivity control devices is based on the lithium expansion module (LEM) proposed by Kambe, et al. [“Startup Sequence of RAPID-L Fast Reactor for Lunar Base Power System,” Proc. Space Nuclear Conference, (2007)], however, the LEM has some issues regarding the lithium neutron absorber, such as production costs, chemical reactivity, and tritium generation. In the present study, the In-Gd alloy is proposed as an alternative to 6Li.
The In-Gd alloy is chemically stable in the air atmosphere; additionally, indium and gadolinium have enough neutron absorption cross section without isotope enrichment. However, the density, thermal expansion, and exothermal heat characteristics are not available, which is important information from the viewpoint of neutronics and safety. Hence, the material properties in the In-Gd alloy were measured, such as temperature-dependent density and chemical reactivity. Furthermore, control rod reactivity worth was evaluated based on the measured density.
As a result, the 1 wt% gadolinium contained in the In-Gd alloy shows control rod reactivity worth that is 2.5 times greater than natural lithium. Furthermore, the uncertainty of the In-Gd alloy density has a small impact on the reactivity worth; only in the range of 78 pcm (equivalent to 1% of insertion position) in the case of the 0.1 g/cm3 perturbation of the In-Gd alloy density. In conclusion, the present study shows the advantage and feasibility of the In-Gd alloy as a liquid neutron absorber for the Indium-Gadolinium Expansion Module.