ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Georgeta Radulescu, Kaushik Banerjee, Thomas M. Miller, Douglas E. Peplow
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1768-1783
Regular Technical Paper | doi.org/10.1080/00295450.2020.1842702
Articles are hosted by Taylor and Francis Online.
The SCALE code system developed at Oak Ridge National Laboratory includes state-of-the-art capabilities for radiation source term and radiation transport simulations that can be used in numerous applications, including dose rate analyses of complex consolidated interim storage facilities (CISFs). A licensed CISF could be used to store tens of thousands of tonnes of spent nuclear fuel discharged from commercial power reactors using various cask and storage pad designs. A CISF design must comply with the regulatory requirements provided in 10 CFR Part 72, including requirements related to annual dose limits applicable to real individuals located beyond the area controlled by the licensee. Therefore, calculating a dose to the public is a necessary part of the licensing process for the construction of a CISF. These calculations are very challenging because of the complexity of the CISF design and the low magnitude of dose rate at large distances from the facility. This paper describes detailed far-field dose rate calculations performed for a proposed CISF using MAVRIC, the Monte Carlo radiation shielding sequence in SCALE 6.2.3, with automated variance reduction based on discrete ordinates calculations. The method presented in this paper uses a detailed Monte Carlo radiation transport simulation in one step from source to dose rate. A series of independent simulations was made using the complete site geometry (all casks present), but with only one cask containing radiation sources to obtain the dose rate maps produced by each storage cask. The CISF dose rate map was obtained by adding the dose rate maps produced by the independent individual cask simulations. Ample volumes of air and soil extending beyond the location of interest for dose rate calculation were included in the calculation model to properly simulate important radiation attenuation and scattering events that affect far-field dose rates. A comprehensive sensitivity study is included in this paper to illustrate the importance of selecting appropriate air volume, mass density, and composition for CISF skyshine dose rate calculations. Dry soil and soil containing water were analyzed to determine their effects on groundshine radiation.