ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Chandrakanth Bolisetti, Justin Coleman, William Hoffman, Andrew Whittaker
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1687-1711
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2021.1932175
Articles are hosted by Taylor and Francis Online.
Seismic analysis, design, and qualification of systems, structures, and components (SSCs) is a significant contributor to the capital cost of a nuclear power plant. To reduce capital costs of advanced nuclear power plants and make commercial nuclear energy more competitive, innovations are needed in their structural design and construction, and not just in the reactor core and associated systems. Seismic isolation has been identified as an important cost-cutting technology that enables standardization of equipment across various sites. This paper develops and demonstrates a cost- and risk-based seismic design optimization of a representative safety system in a nuclear power plant with the dual goals of minimizing overnight capital cost and meeting safety goals. The design optimization can also include component seismic isolation, in which case, the optimized design includes a set of equipment that needs to be seismically isolated to minimize capital cost. The open-source codes MASTODON and Dakota are used for seismic probabilistic risk assessment and design optimization, respectively. A generic nuclear facility with a safety system comprising SSCs that are common to nuclear power plants is considered for the demonstration of the design optimization and is assumed to be located at the Idaho National Laboratory site. Generic costs and seismic design cost functions are assumed for the SSCs of the safety system. The sum of the costs of the SSCs is minimized in the optimization process, while the risk of failure of the safety system is provided as a constraint. Results show that the optimization process reduces capital costs significantly while automatically prioritizing the safety of SSCs that contribute most to the risk of the safety system.