ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Efe G. Kurt, Robert Spears
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1664-1686
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2020.1843952
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission’s functional containment concept provides advanced nuclear power plant designers with more flexibility in terms of the civil/structural design if the appropriate set of barriers for prevention of radioactive material release exist. Some of the conceptual advanced reactor structures, without the traditional pressure boundaries of large containment structures, are proposed to be deeply embedded or buried into soil. This approach is expected to provide (1) lesser seismic demands on the structures and safety-critical structures, (2) eased regulatory efforts and overall design against other external hazards such as aircraft impact, and (3) overall cost savings. One of the important aspects of assessing the technical and economic viability of deeply embedding advanced reactor buildings is to assess the seismic performance with the understanding of effects with material and geometric nonlinearities. This study investigates the seismic response of deeply embedded or buried advanced reactors by conducting three-dimensional nonlinear soil-structure interaction analyses. Although the results indicate that there is a general trend of decreased seismic response with increased embedment depths, the change in the dynamic environment with different embedment depths and the nonlinear environment under high-intensity seismic inputs may result in increased peak response at increased embedment depths.