ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Oak Ridge focuses neutron scattering studies on TRISO fuels
Oak Ridge National Laboratory is reporting a development in TRISO fuel research that could help evaluate high-temperature gas reactor fuels. ORNL researchers used the Spallation Neutrons and Pressure Diffractometer at the lab’s Spallation Neutron Source to make neutron scattering measurements on TRISO fuel particles containing high-assay low-enriched uranium (HALEU).
Troy Howe, Steve Howe, Jack Miller
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 866-875
Technical Note | doi.org/10.1080/00295450.2020.1832814
Articles are hosted by Taylor and Francis Online.
The space industry is expanding at an increasing rate. While most efforts are currently focused on Earth and lunar orbits, it is only a matter of time before affordable exploration missions into deep space become more prevalent. Nuclear electric propulsion (NEP) with large quantities of power have been theorized for such missions with many advantages over traditional solar panels and radioisotope power sources. Key among NEP issues has been the power conversion system, often falling upon dynamic cycles over solid-state options like thermoelectric generators (TEGs) because of low efficiencies. Howe Industries has conceptualized a deep space probe capable of transporting cube satellites (CubeSats) and other payloads to deep space utilizing NEP based on an advanced TEG power conversion system with efficiencies that would challenge traditional dynamic power conversion cycles. Experimentation at a TRIGA research reactor has shown a potential for 20 to 50 times increase in electrical conductivity of potential thermoelectric materials, which would correlate to large increases in efficiencies over traditional TEGs.