ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Richard M. Ambrosi, Daniel P. Kramer, Emily Jane Watkinson, Ramy Mesalam, Alessandra Barco
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 773-781
Technical Paper | doi.org/10.1080/00295450.2021.1888616
Articles are hosted by Taylor and Francis Online.
Radioisotope power systems (RPSs) have transformed our ability to explore the solar system. RPSs have been in existence for almost seven decades. Most missions have utilized 238Pu as the radioisotope of choice to generate electrical power and to produce heat for the operation and thermal management of spacecraft systems. In Europe, for the past decade 241Am has been selected for RPS research programs. This paper hypothesizes that the inclusion of small quantities of relatively short-lived radioisotopes such as 232U and 244Cm, particularly when dealing with long-lived radioisotope 241Am, could have beneficial implications for future RPS designs. This paper focuses on the thermal output implications and impact on system-level design. The authors recognize that the selection of any new or modified radioisotope heat source material will require extensive research on fuel form stability, the radiological impact, cost of production, containment, and launch safety considerations.