ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Stylianos Chatzidakis, Dominic Giuliano, Jeremy Slade, Wei Tang, Roger Miller, Steve Reeves, John Scaglione, Robert Howard
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 750-760
Technical Paper | doi.org/10.1080/00295450.2020.1800309
Articles are hosted by Taylor and Francis Online.
Oak Ridge National Laboratory (ORNL) successfully demonstrated the Versatile Remediation Module (VRM), a prototype module designed and built by ORNL for on-site remote repair of welded stainless steel storage containers for spent nuclear fuel and high-level radioactive waste. This paper describes the VRM prototype and its design features and components to support continued long-term storage or off-site transportation of spent nuclear fuel and high-level radioactive waste currently stored in storage containers. A remote (100 ft away from the simulated radiative environment) demonstration of the VRM was successfully performed on a full-scale mock-up welded stainless steel canister. The VRM is designed with features to accommodate remediation techniques beyond those currently selected and described in this paper. Therefore, many of the VRM’s features may benefit other remote nuclear or nonnuclear applications. The VRM is envisioned to serve as a development center to facilitate and enhance further development of new remediation technologies.